Перевод: с русского на английский

с английского на русский

параметр силовой установки

  • 1 параметр силовой установки

    Astronautics: propulsion parameter

    Универсальный русско-английский словарь > параметр силовой установки

  • 2 параметр работы силовой установки

    Универсальный русско-английский словарь > параметр работы силовой установки

  • 3 параметр

    параметр сущ
    parameter
    выдерживать заданный параметр
    maintain the parameter
    вычислитель параметров автоматического ухода на второй круг
    auto go around computer
    вычислитель параметров захода на посадку
    approach computer
    вычислитель параметров траектории полета
    flight-path computer
    вычислитель параметров ухода на второй круг
    1. overshoot computer
    2. go-around computer консультативное сообщение о порядке выдерживания заданных параметров
    maintain advisory
    критический расчетный параметр
    critical design parameter
    метеорологический параметр
    meteorological parameter
    основной параметр
    basic parameter
    основные технические параметры
    basic technical data
    параметр потока, критический по шуму
    noise-critical flow parameter
    параметр работы силовой установки
    propulsion parameter
    радиолокационный метод определения параметров ветра
    rawin
    расчет эксплуатационных параметров
    derivation of operating data
    регистратор параметров полета
    1. black box
    2. flight data recorder регулировать двигатель до заданных параметров
    adjust the engine
    система измерения посадочных параметров воздушного судна
    aircraft landing measurement system
    система сбора воздушных параметров
    flight environment data system
    (условий полета) эксплуатационный параметр
    operational parameter

    Русско-английский авиационный словарь > параметр

  • 4 силовой

    вспомогательная силовая установка
    auxiliary power unit
    газотурбинная силовая установка
    gas turbine power plant
    гидравлический силовой цилиндр
    hydraulic power cylinder
    мощность силовой установки
    powerplant output
    наружное силовое лобовое стекло
    outer panel windshield
    параметр работы силовой установки
    propulsion parameter
    пневматический силовой цилиндр
    pneumatic power cylinder
    силовая нервюра
    supporting rib
    силовая установка
    1. power plant
    2. thrust system 3. propulsion 4. powerplant, power-unit 5. propulsion unit силовой агрегат
    power unit
    силовой лонжерон
    load-carrying spar
    силовой набор пола
    floor structure
    (кабины) силовой треугольник
    force triangle
    силовой узел
    vital component
    силовой цилиндр
    1. power cylinder
    2. ram силовой цилиндр подъемника
    jack ram
    силовой цилиндр складывающегося подкоса
    folding strut actuating cylinder
    силовой шпангоут
    strong frame
    силовой шпангоут гондолы
    nacelle strong frame
    силовой элемент конструкции
    primary structural member
    усталость силового набора фюзеляжа
    airframe fatigue

    Русско-английский авиационный словарь > силовой

  • 5 режим работы гребной установки

    Русско-английский военно-политический словарь > режим работы гребной установки

  • 6 пульт управления энергетической установкой

    Русско-английский военно-политический словарь > пульт управления энергетической установкой

  • 7 установка

    установка сущ
    1. installation
    2. set автоматическая установка закрылков
    automatic flap positioning
    арматура установки огней
    light fixture
    аэродромная установка для запуска
    ground air starting unit
    безэховая испытательная установка
    anechoic test facilities
    бортовая установка
    board installation
    бытовая установка
    commissary truck
    визир установки курса
    course setting sight
    вспомогательная силовая установка
    auxiliary power unit
    втулка для установки свечи зажигания
    igniter plug ferrule
    втулка для установки форсунки
    fuel nozzle ferrule
    газотурбинная силовая установка
    gas turbine power plant
    допуск на установку
    installation tolerance
    зажим для установки поршневых колец
    piston ring clamp
    зона установки высотомеров
    altimeter setting region
    кремальера установки шкалы
    scale setting knob
    крыло с изменяемым углом установки
    variable-incidence wing
    линия установки
    alignment bar
    место установки домкрата для подъема воздушного судна
    aircraft jacking point
    механизм установки шага лопастей
    pitch-changing mechanism
    минимальное время установки
    minimum installation time
    минимальные расходы на установку
    minimum installation costs
    моечная установка для воздушных судов
    aircraft washing plant
    мощность силовой установки
    powerplant output
    наземная установка для запуска
    ground starting unit
    ошибка установки нуля
    zero setting error
    параметр работы силовой установки
    propulsion parameter
    подвижная шкала для установки нуля
    zero adjusting bezel
    положение при установке
    mounting position
    порядок установки на место стоянки
    docking procedure
    порядок установки указателей
    signposting
    (движения по аэродрому) приспособление для установки колеса
    wheel installation device
    радиолокационная установка
    radar installation
    силовая установка
    1. thrust system
    2. propulsion unit 3. propulsion 4. power plant 5. powerplant, power-unit система управления воздушным судном при установке на стоянку
    approach guidance nose-in to stand system
    стационарная установка для обслуживания воздушного судна
    aircraft servicing installation
    схема установки
    installation diagram
    тормозная установка
    runway arrester
    точность установки курса
    course alignment
    угол установки лопасти
    blade angle
    угол установки лопасти воздушного винта
    1. airscrew blade incidence
    2. propeller incidence угол установки сопла
    nozzle angle
    указатель места установки
    stopping position indicator
    указатель установки высотомера
    altimeter setting indicator
    установка в определенное положение
    positioning
    установка во флюгерное положение
    feathering
    установка в положение для захода на посадку
    approach setting
    установка высотомера
    altimeter setting
    (по давлению аэродрома) установка двигателя
    engine installation
    установка для зарядки кислородом
    oxygen charging set
    установка для проверки герметичности кабины
    cabin leak test set
    установка для проверки расходомеров
    flowmeter set
    установка для проверки тахометров
    tachometer test set
    установка для прокачки
    flushing unit
    установка заданного курса
    heading set
    установка закрылка
    flap setting
    (на определенный угол) установка закрылков на взлетный угол
    flaps takeoff setting
    установка закрылков на посадочный угол
    flaps landing setting
    установка кресел
    seat installation
    установка мощности
    power setting
    (двигателя) установка на замок выпущенного положения
    lockdown
    установка на замок убранного положения
    lockup
    установка на место обслуживания
    docking manoeuvre
    установка на место стоянки
    1. docking
    2. parking manoeuvre установка подвижной шкалы
    subscale setting
    установка режима работы двигателя
    throttle setting
    установка соконусности лопастей
    blades tracking
    установка угла атаки
    angle-of-attack control
    установка угла положения крыла
    wing setting
    установка углов возвышения глиссадных огней
    elevation setting of light units
    установка централизованной заправки
    hydrant truck
    установка шага лопасти воздушного винта
    propeller pitch setting
    холодильная установка
    cold-air unit
    шкала углов установки лопасти
    blade pitch scale

    Русско-английский авиационный словарь > установка

  • 8 работа

    авиационные работы
    aerial work
    безотказная работа
    1. rtouble-free operation
    2. no-failure operation взлет на режимах работы двигателей, составляющих наименьший шум
    noise abatement takeoff
    восстанавливать работу системы
    restore the system
    выбор режима работы двигателя
    selection of engine mode
    выполнять работу на воздушном судне
    work on the aircraft
    допуск к работе в качестве пилота
    act as a pilot authority
    карта выполнения регламентных работ
    scheduled maintenance task card
    максимально допустимое время работы
    operation time limit
    механизм синхронизации работы воздушного винта
    propeller synchronization mechanism
    механизм согласования работы створок
    doors sequence mechanism
    нарушать работу
    impair the operation
    непараллельная работа
    unparalleled operation
    несимметрическая работа закрылков
    asymmetric flaps operation
    опыт летной работы
    1. flying experience
    2. flying proficiency опыт работы в авиации
    aeronautical experience
    останов при работе на малом газе
    idle cutoff
    параллельная работа
    paralleled operation
    параметр работы силовой установки
    propulsion parameter
    перебои в работе двигателя
    1. engine trouble
    2. rough engine operations переключатель выбора режима работы автопилота
    autopilot mode selector
    переключатель режимов работы
    mode selector switch
    периодичность проведения регламентных работ
    scheduled maintenance frequency
    поисково-спасательные работы
    1. search and rescue works
    2. search and rescue operations полет для выполнения работ
    1. aerial work flight
    2. aerial work operation проведение работ по снижению высоты препятствий для полетов
    obstacle clearing
    продолжительность работы двигателя на взлетном режиме
    full-thrust duration
    работа в режиме запуска двигателя
    engine start mode
    работа двигателя
    engine running
    работа двигателя на режиме малого газа
    idling engine operation
    работа на малом газе
    light running
    работа на режиме холостого хода
    idle running
    работа на смежных диапазонах
    cross-band operation
    работа только в режиме приема
    receiving only
    работы по техническому обслуживанию
    maintenance operations
    регламентные работы
    scheduled tasks
    регламентный работы
    maintenance check
    режим работы
    rating
    режим работы автопилота по заданному курсу
    autopilot heading mode
    режим работы с полной нагрузкой
    full-load conditions
    симметричная работа закрылков
    symmetric flap operation
    система автоматического управления параллельной работой генераторов
    generator autoparalleling system
    система контроля за работой визуальных средств
    system of monitoring visual aids
    (на аэродроме) снижать режим работы двигателя
    slow down an engine
    снижение режима работы
    throttle retarding
    спасательные работы
    1. salvage
    2. rescue 3. rescue fighting строительные работы с помощью авиации
    construction work operations
    схема последовательности работы
    sequence-of-operation diagram
    табло режимов работы
    mode annunciator
    тормозной режим работы
    retardation mode
    указатель режима работы
    mode indicator
    условия работы экипажа
    crew environment
    установка режима работы двигателя
    throttle setting
    цифровой электронный регулятор режимов работы двигателя
    digital engine control
    чрезвычайный режим работы
    contingency rating
    элеронный режим работы
    aileron mode

    Русско-английский авиационный словарь > работа

  • 9 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

См. также в других словарях:

  • ГОСТ Р 52782-2007: Установки газотурбинные. Методы испытаний. Приемочные испытания — Терминология ГОСТ Р 52782 2007: Установки газотурбинные. Методы испытаний. Приемочные испытания оригинал документа: вычисление неопределенности по типу A [(type A evaluation (of uncertainty)]: Способ вычисления неопределенности путем… …   Словарь-справочник терминов нормативно-технической документации

  • электрический — 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ПОЛЕТА ТЕОРИЯ И ПРАКТИКА — совокупность прикладных знаний, позволяющих авиационным инженерам на занятий в области аэродинамики, проблем прочности, двигателестроения и динамики полета летательных аппаратов (т.е. теории) создать новый летательный аппарат или улучшить… …   Энциклопедия Кольера

  • Ан-70 — Взлёт Ан 70, 2008 год. Тип …   Википедия

  • Т-90 — Т 90А на репетиции Парада в честь 67 ой годовщины Победы в Великой Отечественной войне …   Википедия

  • M36 (САУ) — У этого термина существуют и другие значения, см. М36 …   Википедия

  • Поезд — Привод Локомо …   Википедия

  • De Havilland Dragon — De Havilland DH.84 Dragon …   Википедия

  • лётные исследования — Рис. 1. Одна из моделей процесса измерений при летных исследованиях. лётные исследования — физический эксперимент в натурных условиях (в полёте) и изучение на основе результатов эксперимента закономерностей взаимодействия летательного… …   Энциклопедия «Авиация»

  • лётные исследования — Рис. 1. Одна из моделей процесса измерений при летных исследованиях. лётные исследования — физический эксперимент в натурных условиях (в полёте) и изучение на основе результатов эксперимента закономерностей взаимодействия летательного… …   Энциклопедия «Авиация»

  • время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»